

Welcome to virt-backup’s documentation!

virt-backup does hot external backups of your Libvirt [https://libvirt.org/] guests, using the
BlockCommit feature. The goal is to do an automatic backup system, with
optional compression, and be able to easily restore a backup.

virt-backup is based around groups: a group contains a list of domains to backup, that can be matched by regex.
Each group contains its own configuration, specifying how to store the backups (compression, directory, etc.),
where to store them, the retention by period of time when a cleanup is called, etc.

Features

	Hot backup one or multiple qemu/raw disk, snapshoting everything at the same time.

	Cold backup a qemu/raw disk.

	Multithreading: can backup multiple domains in parallel.

	Supports multiple targets for backups:

	Directory: just copies images in a directory.

	Tar: stores all images of a backup in a tar file (with optional xz/gz/bzip2 compression).

	ZSTD: compresses the images using ZSTD algorithm (supports multithreading).

	Restore a backup to a folder.

	List all backups, by VM name.

	Clean backup, with configurable time retention (number of backups to keep,
per domain, per hours/day/weeks/months/years)

Limitations

	Only supports file type disks (qemu, raw, etc.). Does not support LVM or any block disk.

	Does not handle Libvirt external snapshots. BackingStores are just ignored
and only the current running disk is backup.

	virt-backup has to run on each hypervisor. It has to be able to read the
disks in order to backup them, and it uses the same disk path as configured
in Libvirt.

Contents:

	Quickstart
	Installation

	Configuration

	Backup

	List

	Restore

	Clean

	Configuration
	Full example

	Global options

	Libvirt connection

	Backup groups

	Backup
	Principle

	How it works

	Groups

	Domain external snapshot

	Packagers

	Data maps
	Compatibility layers

	Configuration

	Backup definition

	Pending data

	Backups cleaning
	Remove a specific backup

	Clean outdated backups

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

	virt-backup has 4 main functions:

	
	backup

	list backups

	restore

	clean backups

This page describes how to install virt-backup, create a generic configuration then how to use these 4 functions.

Table of Contents

	Quickstart

	Installation

	Configuration

	Backup

	List

	Restore

	Clean

Installation

Run:

pip3 install virt-backup

Or by using setuptools:

python3 ./setup.py install

virt-backup is Python 3 compatible only.

Configuration

virt-backup is based around the definition of groups. Groups can include or exclude as many domains as needed,
and define the backup properties: compression, disks to backup, where to store the backups, retention, etc..

Groups definition is the biggest part of the configuration.

The configuration is a yaml file. Here is a quite generic one:

########################
Global options
########################

Be more verbose
debug: False

How many threads (simultaneous backups) to run. Use 0 to use all CPU threads
detected, 1 to disable multitheading for backups, or the number of threads
wanted. Default: 1
threads: 1

############################
Libvirt connection
############################

Libvirt URI
uri: "qemu:///system"

Libvirt authentication, if needed
username:
passphrase:

#######################
Backup groups
#######################

Groups are here to share the same backup options between multiple domains.
That way, it is possible, for example, to have a different policy retention
for a pool of guests in testing than for the one in production.

Define default options for all groups.
Here we set the retention parameters for each VM when calling `virt-backup clean`.
default:
 hourly: 1
 daily: 4
 weekly: 2
 monthly: 5
 yearly: 1

Groups definition
groups:
 ## Group name ##
 test:
 ## Backup directory ##
 target: /mnt/kvm/backups

 ## Use ZSTD compression, configured at lvl 6
 packager: zstd
 packager_opts:
 compression_lvl: 6

 ## When doing `virt-backup backup` without specifying any group, only
 ## groups with the autostart option enabled will be backup.
 autostart: True

 ## Enable the Libvirt Quiesce option when taking the external snapshots.
 ##
 ## From Libvirt documentation: libvirt will try to freeze and unfreeze the guest
 ## virtual machine’s mounted file system(s), using the guest agent. However, if the
 ## guest virtual machine does not have a guest agent, snapshot creation will fail.
 ##
 ## However, virt-backup has a fallback mechanism if the snapshot happens to fail
 ## with Quiesce enabled, and retries without it.
 quiesce: True

 ## Hosts definition ##
 hosts:
 ## Will backup everything.
 - "r:.*"

vim: set ts=2 sw=2:

Adapt it and save it either as:

	~/.config/virt-backup/config.yml

	/etc/virt-backup/config.yml

Backup

All groups set with the autostart option to True can be started by running:

$ virt-backup backup

A specific group (test) can be started by running:

$ virt-backup backup test

The group has to be defined in the configuration.

Multiple groups can be ran with:

$ virt-backup backup group1 group2 […]

List

To list the backups for all groups, as a summary:

$ virt-backup list

 generic
=========

Total backups: 2 hosts, 22 backups
Hosts:
 vm-foo-0: 11 backup(s)
 vm-bar-0: 11 backup(s)

 test
======

Total backups: 1 hosts, 11 backups
Hosts:
 vm-foo-1: 11 backup(s)

To have a really short summary for all groups:

$ virt-backup list -s

 generic
=========

Total backups: 9 hosts, 99 backups

 test
======

Total backups: 1 hosts, 11 backups

By default, only domains with at least one backup will be listed, but all domains matching with the group rules can be
printed by using the -a/--all option.

To list exactly all the backups done for one domain, here vm-foo-0:

$ virt-backup list -D vm-foo-0

 generic
=========

vm-foo-0: 11 backup(s)
 2020-09-17T01:02:53+00:00: /backups/vm-foo-0/20200917-010253_8_vm-foo-0.json
 2020-09-16T01:02:56+00:00: /backups/vm-foo-0/20200916-010256_8_vm-foo-0.json
 2020-09-15T01:02:39+00:00: /backups/vm-foo-0/20200915-010239_8_vm-foo-0.json
 2020-09-14T01:02:34+00:00: /backups/vm-foo-0/20200914-010234_8_vm-foo-0.json
 2020-09-07T01:03:07+00:00: /backups/vm-foo-0/20200907-010307_8_vm-foo-0.json
 2020-09-01T01:02:22+00:00: /backups/vm-foo-0/20200901-010222_8_vm-foo-0.json
 2020-08-01T01:02:20+00:00: /backups/vm-foo-0/20200801-010220_8_vm-foo-0.json
 2020-07-01T00:55:01+00:00: /backups/vm-foo-0/20200701-005501_3_vm-foo-0.json
 2020-06-01T00:55:02+00:00: /backups/vm-foo-0/20200601-005502_3_vm-foo-0.json
 2020-05-01T00:55:01+00:00: /backups/vm-foo-0/20200501-005501_3_vm-foo-0.json
 2020-04-01T00:55:01+00:00: /backups/vm-foo-0/20200401-005501_3_vm-foo-0.json

Which lists when the backup was taken, and where its definition file is stored. If the domain matches multiple groups,
backups will be listed per group.

Restore

To restore the last backup of a domain (vm-foo-0) part of a given group (generic), and extract the result in the given target destination (~/disks):

$ virt-backup restore generic vm-foo-0 ~/disks

Which extracts everything backuped to ~/disks.

To extract a specific backup, its date can be specified (2020-09-17T01:02:53+00:00):

$ virt-backup restore --date 2020-09-17T01:02:53+00:00 generic vm-foo-0 ~/disks

The format is for the moment non convenient and some work will be needed to facilitate it. For the moment, the exact
date and format as given by virt-backup list has to be used.

Clean

It is possible to automatically clean old backups, by following the configured rentention policy, but also broken backups (for which the backup process was not correctly interrupted, by a
crash or server shutdown for example).

To clean old and broken backups for all groups:

$ virt-backup clean

To limit the cleaning to one group only (test):

$ virt-backup clean test

To only clean the broken backups, but not handle the old (correct) backups:

$ virt-backup clean -b

Opposite situation, to not clean the broken backups but only handle the old (correct) backups:

$ virt-backup clean -B

A systemd service is available in example/virt-backup-clean.service [https://raw.githubusercontent.com/aruhier/virt-backup/master/example/virt-backup-clean.service] to trigger a
cleaning of all broken backups at start. This way, if the hypervisor crashed during a backup, the service will clean
all temporary files and pivot all disks to their original images (instead of running on a temporary external snapshot).

Configuration

This page describes how to configure virt-backup and goes in detail for each section.

Table of Contents

	Configuration

	Full example

	Global options

	Libvirt connection

	Backup groups

	Group options

Full example

The configuration is a yaml file virtually split into 3 main sections: the global
options, libvirt connection and backup groups. Here is a full example:

########################
Global options
########################

Be more verbose
debug: False

How many threads (simultaneous backups) to run. Use 0 to use all CPU threads
detected, 1 to disable multitheading for backups, or the number of threads
wanted. Default: 1
threads: 1

############################
Libvirt connection
############################

Libvirt URI
uri: "qemu:///system"

Libvirt authentication, if needed
username:
passphrase:

#######################
Backup groups
#######################

Groups are here to share the same backup options between multiple domains.
That way, it is possible, for example, to have a different policy retention
for a pool of guests in testing than for the one in production.

Define default options for all groups.
default:
 hourly: 1
 daily: 4
 weekly: 2
 monthly: 5
 yearly: 1

Groups definition
groups:
 ## Group name ##
 test:
 ## Backup directory ##
 target: /mnt/kvm/backups

 ## Packager to use for each backup:
 ## directory: images will be copied as they are, in a directory per domain
 ## tar: images will be packaged in a tar file
 ## zstd: images will be compressed with zstd. Requires python "zstandard" package to be installed.
 packager: tar

 ## Options for the choosen packager:
 ## tar:
 ## # Compression algorithm to use. Default to None.
 ## compression: None | "xz" | "gz" | "bz2"
 ## # Compression level to use for each backup.
 ## # Generally this should be an integer between 1~9 (depends on the
 ## # compression algorithm), where 1 will be the fastest while having
 ## # the lowest compression ratio, and 9 gives the best compression ratio
 ## # but takes the longest time to compress.
 ## compression_lvl: [1-9]
 ##
 ## zstd:
 ## # Compression level to use for each backup.
 ## # 1 will be the fastest while having the lowest compression ratio,
 ## # and 22 gives the best compression ratio but takes the longest time
 ## # to compress.
 ## compression_lvl: [1-22]
 packager_opts:
 compression: xz
 compression_lvl: 6

 ## When doing `virt-backup backup` without specifying any group, only
 ## groups with the autostart option enabled will be backup.
 autostart: True

 ## Retention policy: the first backup of the day is considered as the
 ## "daily" backup, first of the week "weekly", etc. The following options
 ## detail how many backups of each type has to be kept. Set to "*" or None for an
 ## infinite retention.
 ## Default to 5 for everything, meaning that calling "virt-backup clean" will let 5
 ## backups for each period not specified in the config.
 hourly: 5
 daily: 5
 weekly: 5
 monthly: 5
 yearly: 1

 ## Enable the Libvirt Quiesce option when taking the external snapshots.
 ##
 ## From Libvirt documentation: libvirt will try to freeze and unfreeze the guest
 ## virtual machine’s mounted file system(s), using the guest agent. However, if the
 ## guest virtual machine does not have a guest agent, snapshot creation will fail.
 ##
 ## However, virt-backup has a fallback mechanism if the snapshot happens to fail
 ## with Quiesce enabled, and retries without it.
 quiesce: True

 ## Hosts definition ##
 hosts:
 ## This policy will match the domain "domainname" in libvirt, and will
 ## backup the disks "vba" and "vdb" only.
 - host: domainname
 disks:
 - vda
 - vdb
 ## Quiesce option can also be overriden per host definition.
 quiesce: False
 ## Will backup all disks of "domainname2" ##
 - domainname2
 ## Regex that will match for all domains starting with "prod". The regex
 ## syntax is the same as the python one
 - "r:^prod.*"
 ## Exclude the domain domainname3 (useful with regex, for example)
 - "!domainname3"
 ## Exclude all domains starting with "test"
 - "!r:^test.*"

vim: set ts=2 sw=2:

It can be saved as (the order defines the priority of the import):

	~/.config/virt-backup/config.yml

	/etc/virt-backup/config.yml

Global options

They define the global behavior of virt-backup:

	debug: if True, virt-backup is more verbose. Enable this option (or use the
global -d command line option) for bug reports. (Optional, default: False)

	threads: how many simultaneous backups to run. Set it to the number of threads
wanted, or 1 to disable multithreading, or 0 to use all CPU threads detected.
(Optional, default: 1)

Libvirt connection

They define the options to connect to libvirt:

	uri: libvirt URI: https://libvirt.org/uri.html

	username: connection username. (Optional)

	password: connection password. (Optional)

virt-backup can technically connect to a distant Libvirt, but in order to actually
backup the domain disks, it has to have access to the files. Therefore, it should run on
the same hypervisor than Libvirt.

Backup groups

Groups domains allow to share the same backup options between multiple domains.
This way, it is possible to define for example a different retention set or compression
for a pool of domains in production than one in testing.

	default: dictionary containing all the default options for the groups. If a
group redefines an option, it overrides it.

	groups: dictionary defining the groups. Groups are defined per names, and are
themselves dictionary defining their options.

Group options

	target: backup directory.

	packager: which packager to use. Read the Packagers section for more info.

	packager_opts

	autostart: if True, this group will be automatically backup when doing
virt-backup backup without the need of specifying it. Otherwise, if set to
False, it needs to be specifically called (virt-backup backup foo bar).

	hourly, daily, weekly, monthly, yearly: retention policy. Read
the Retention section for more info.

	quiesce: Enable the Libvirt Quiesce option when taking the external snapshots.

From Libvirt documentation: libvirt will try to freeze and unfreeze the guest virtual
machine’s mounted file system(s), using the guest agent. However, if the guest virtual
machine does not have a guest agent, snapshot creation will fail.

However, virt-backup has a fallback mechanism if the snapshot happens to fail with
Quiesce enabled, and retries without it.

	hosts: domains to include in this group. Read the Hosts section for more info.

Packagers

Packagers define the storage mechanism. The existing packagers are:

	directory: images will be copied as they are, in a directory per domain

	tar: images will be packed into a tar file

	zstd: images will be compressed with zstd. Requires python zstandard library
to be installed.

Then, depending on the packager, some options can be set.

	Tar options:

	
	compression: set the compression algorithm for the tar archive. (Valid options:
None | xz | gz | bz2, default: None)

	compression_lvl: set the compression level for the given algorithm. Generally
this should be an integer between 1 and 9 (depends on the compression algorithm), where
1 will be the fastest while having the lowest compression ratio, and 9 gives the
best compression ratio but takes the longest time to compress.

For more info, read https://docs.python.org/3/library/tarfile.html.

	ZSTD options:

	
	compression_lvl: set the compression level, between 1 and 22. 1 will be the fastest while having
the lowest compression ratio, and 22 gives the best compression ratio but takes the
longest time to compress.

Hosts

The hosts option contain a list of domains to match for this group. Each item of this list can also limit the
backup to specific disks, and override different options.

To only do host matching:

hosts:
 # Will backup all disks of "domainname2"
 - domainname2
 # Regex that will match for all domains starting with "prod". The regex syntax is the same as the python one
 - "r:^prod.*"
 # Exclude the domain domainname3 (useful with regex, for example)
 - "!domainname3"
 # Exclude all domains starting with "test"
 - "!r:^test.*"

To do a more detailed definition, and limit the host to only a list of disks:

hosts:
 - host: domainname
 disks:
 - vda
 - vdb
 ## Quiesce option can also be overriden per host definition.
 quiesce: False
 # It can still also be a regex.
 - host: "r:^prod.*"
 disks:
 - vda

As shown in the example, exclusion is possible by adding !. The order of definition does not matter, and exclusion
will always take precedence over the inclusion.

Retention

The available retention options define how many backups to keep per period when cleaning this group. The available time
periods are:

	hourly

	daily

	weekly

	monthly

	yearly

The default value is 5 for everything.

The first backup of the hour is called an hourly backup, first of the day is daily, etc.
Setting daily to 2 would mean to keep the first backups of the day of the last 2 days. weekly to 2
would mean to keep the first backup of the week of the last 2 weeks.

The last 2 days/weeks/etc. is here a simplification in the explanation. Please read the backups cleaning
documentation to get a full explanation of the cleaning process.

Backup

This page describes how the backup process works.

Table of Contents

	Backup

	Principle

	How it works

	Groups

	Unicity

	Multithreading

	Domain external snapshot

	Packagers

Principle

	A complete backup is defined by its definition. A definition is a json file, stored next to the backup, containing
informations such as the domain name, the disk backups, path to the backup, etc. This is the file listed when doing
virt-backup list -D domain.

	A pending backup is defined by its pending_info. The pending_info is a definition with some additional
attributes computed when running the backup. It is stored next to the backup, and removed when the backup is
complete. It is used to rebuild a temp backup if a crash happened, and clean everything.

How it works

When backuping multiple groups, first virt-backup will build all the groups with the given rules, then merge it into
one. It allows to have a unique entry point to start everything, and deduplicate the similar backups. Read the
groups unicity section for more details.

If multithreading is disabled, it then starts the backups one by one. However, if multithreading is enabled, a safety
mechanism is followed if multiple backups target the same domain. Read the groups multithreading section for more details.

Then, each backups are started. For each backup, the first step is to create the backup directory, and take an external
snapshot of all targeted disks (read the domain external snapshot section for more
details). This method is used in order to freeze the disks by the time virt-backup backup them, and then merge them
back with the main disks and pivot the domains like before. There is however multiple inconvenient for that: if the
VM is doing a lot of “remove” (freeing blocks), it’s more operations as the external snapshot needs to log it. And it
obviously requires temporarily more space.

Then the pending info are dumped on disk, where the backup should be. This step allows to be able to clean
the backup if virt-backup would happen to crash (by using virt-backup clean). It contains the snapshot names and
different informations that are known only when starting the backups.

Now that the disks are frozen, they can be safely copied somewhere. This somewhere is defined by the packager (see the
virt_backup.backups.packagers package). A packager is a way to store a backup, and expose a standard API so the
backup does not have to care about it. Each disks are copied sequentially into the packager.

The definition is dumped again, with all the final info. The pending info are removed, the external snapshots are
cleaned (meaning for each snapshot, a blockcommit is triggered, the external snapshot is removed, the disk is pivot).

If anything goes wrong during the backup, the external snapshot is cleaned, the pending info are removed such as
everything created for the backup (only the backup directory is left).

Groups

Unicity

If multiple groups are backup and some share the same domains to backup, virt-backup will try to see if the backups
could be compatible to avoid doing the exact same backup multiple times.

Example of a groups configuration:

groups:
 group1:
 target: /mnt/kvm/backups

 packager: zstd
 packager_opts:
 compression_lvl: 6

 ## Hosts definition ##
 hosts:
 - "test1"

 group2:
 target: /mnt/kvm/backups

 packager: zstd
 packager_opts:
 compression_lvl: 6

 ## Hosts definition ##
 hosts:
 - "r:test.*"

 group3:
 target: /mnt/kvm/backups_disk1_only

 packager: tar

 ## Hosts definition ##
 hosts:
 - name: "test1"
 disks:
 - disk1

Here group1 and group2 will try to backup the domain test1 with all its disks, with the same compression
parameters and to the same target directory. Therefore, test1 can only be backup once.

However, group3 specifies that only the disk disk1 of test1 has to be backup, and put it in a tarfile in a
different target directory. It is not considered as compatible with what group1 and group2 specify, therefore it
will be backup a second time.

Running a backup with this configuration will do 2 backups for test1: one shared between group1 and group2, one
for group3.

Multithreading

Backuping a group can be done in single thread or multithread. As a group can contain the same domain with different
options, some safety have been done to avoid backuping the same domain in parallel. It is needed as the process relies
on external snapshot, doing so would take an external snapshot of a snapshot (with the current implementation).

As it is considered to be a rare case, all backups targeting the same domain are scheduled in a queue. If other domains
are to backup, the backups in these queues are normally handled in parallel of other backups.

Domain external snapshot

A custom helper is implemented to handle the external snapshots (see the virt_backup.backups.snapshot package). It
uses libvirt to create it, then allows to remove it and pivot back to the main disk by using blockcommit (read this
libvirt example [https://wiki.libvirt.org/page/Live-disk-backup-with-active-blockcommit] for more details).

Quiesce is an option when creating the snapshot. It allows to communicate with the virt agent present on the domain to
force a sync of the disk before taking the snapshot.
If Quiesce is wanted, when doing the snapshot, it first tries to do it with this option. If it fails, because for
example there is no virt-agent running on this domain, it fallbacks on a snapshot without Quiesce (but logs an error).

Pivoting back to the main disk depends if the domain is up or not. Libvirt does not allow a blockcommit on a shutdown
domain. In this case, qemu-img is used directly to manually handle the blockcommit. Otherwise, libvirt API is used.

To blockcommit, libvirt uses an event mechanism. Libvirt takes a function that it will call if there is an issue with
the blockcommit, or if it’s done. To centralize it, a custom helper DomExtSnapshotCallbackRegistrer is used (see
the virt_backup.backups.snapshot package). It stores the callback to call per snapshot path, so when libvirt calls
the register as a callback, it then look for the known snapshots and call the function to trigger a pivot. This
function is handled by the DomExtSnapshot, which aborts the blockjob and removes the snapshot.

Packagers

Packagers in virt-backup are a common way to deal with storage. They are defined in the
virt_backup.backup.packagers package. A packager can provide an abstracted way to deal with a folder, archive or
else.

Each packager is split in 2:

	Read packager, inherited from virt_backup.backup.packagers._AbstractReadBackupPackager. Provides mechanisms to
list backups from a packager and restore a specific backup (by copying it to a given path).

	Write packager, inherited from virt_backup.backup.packagers._AbstractWriteBackupPackager. Provide mechanisms to
add a new backup in a packager, delete the package and, when possible, remove a specific image from a backup. When
the package is shareable between backups (for example, with a folder storing all the images of a domain), it also
provide a way to remove a specific backup from the package.

Splitting in read/write allows more safety when dealing with backups: the write packager is used only when the backup
mechanism absolutely needs it, otherwise the read packager is used.

Available packagers are:

	directory: store the images directly in a directory. Can be a directory per backup, or a directory shared for
multiple backups.

	tar: store the backups in a tar archive. Can handle compression.

	zstd: store the backups in a zstd archive. Compression level is customizable. Can also handle multithreading for
the compression itself.

Data maps

This page lists the custom data defined and used by virt-backup, and their schema.

Table of Contents

	Data maps

	Compatibility layers

	Configuration

	Backup definition

	Pending data

Compatibility layers

In order to ensure that virt-backup can read old backups, old configurations and pending
datas, it uses compatibility layers.

Compatibility layers are defined in virt_backup.compatibility_layers, and each data
has its own package.

Compatibility layers can use a range of version if the data allows it. A configuration
doesn’t define any version for example, so its compatibility layers will be executed
iteratively. However, Definitions and Pending Info contained a version, therefore only
the compatibility layers between its version and the last one will be ran.

Depending the data, warnings can be shown to the user to apply the migrations
themselves. Configuration for example will indicate the needed steps to migrate the
configuration file. Things will still run if it is not migrated, but the support of old
configurations can be dropped in the future.

To ensure that old data can be migrated to a last wanted state, some tests run all the
compatibility layers (tests/test_compat_layers_*).

Configuration

The configuration file is a yaml file used by virt-backup in virt_backup.config.Config:

Be more verbose.
Default: False
debug: bool

How many threads (simultaneous backups) to run. Use 0 to use all CPU threads
detected, 1 to disable multitheading for backups, or the number of threads wanted.
Default: 1
threads: int

############################
Libvirt connection
############################

Libvirt URI.
uri: str

Libvirt authentication, if needed.
username: str
passphrase: str

#######################
Backup groups
#######################

Groups are here to share the same backup options between multiple domains.
That way, it is possible, for example, to have a different policy retention
for a pool of guests in testing than for the one in production.

Define default options for all groups.
default:
 target: str
 packager: str
 packager_opts: dict{packager_option: value}
 quiesce: bool
 hourly: int
 daily: int
 weekly: int
 monthly: int
 yearly: int

Groups definition.
groups:
 # Group name
 str:
 # Backup directory.
 target: str

 # Packager to use for each backup:
 packager: str

 # Options for the choosen packager:
 packager_opts: dict{packager_option: value}

 # When doing `virt-backup backup` without specifying any group, only groups with
 # the autostart option enabled will be backup.
 # Default: False
 autostart: bool

 # Retention policy: the first backup of the day is considered as the
 # "daily" backup, first of the week "weekly", etc. The following options
 # detail how many backups of each type has to be kept. Set to "*" or None for an
 # infinite retention.
 # Default:
 # hourly: 5
 # daily: 5
 # weekly: 5
 # monthly: 5
 # yearly: 5
 hourly: int
 daily: int
 weekly: int
 monthly: int
 yearly: int

 # Enable the Libvirt Quiesce option when taking the external snapshots.
 #
 # From Libvirt documentation: libvirt will try to freeze and unfreeze the guest
 # virtual machine’s mounted file system(s), using the guest agent. However, if the
 # guest virtual machine does not have a guest agent, snapshot creation will fail.
 #
 # However, virt-backup has a fallback mechanism if the snapshot happens to fail
 # with Quiesce enabled, and retries without it.
 quiesce: bool

 # Hosts definition.
 hosts:
 # Can either be a dictionary or a str.
 - host: str
 disks: []str
 quiesce: bool
 # If a str, can be the domain name, or a regex.
 - str

Backup definition

A backup definition is a JSON file defining a backup. It is stored next to the backup
package to quickly get all the needed information about it, without the need of
unpacking anything:

{
 name: str,
 domain_id: int,
 domain_name: str,
 // Dump of the libvirt definition of the targeted domain.
 domain_xml: str,
 disks: { disk_name <str>: backup_disk_name <str> },
 version: str,
 date: int,
 packager: {
 type: str,
 opts: {},
 },
}

Example:

{
 "name": "20191001-003401_3_test-domain",
 "domain_id": 3,
 "domain_name": "test-domain",
 "domain_xml": "<domain type='kvm' id='3'></domain>",
 "disks": {
 "vda": "20191001-003401_3_test-domain_vda.qcow2",
 },
 "version": "0.4.0",
 "date": 1569890041,
 "packager": {
 "type": "tar",
 "opts": {
 "compression": "gz",
 "compression_lvl": 6,
 },
 },
}

Pending data

Pending data is a temporary backup definition, following the same structure but with a bit more information in order to
clean everything if something failed:

{
 name: str,
 domain_id: int,
 domain_name: str,
 // Dump of the libvirt definition of the targeted domain.
 domain_xml: str,
 disks: {
 disk_name <str>: {
 src: str,
 snapshot: str,
 target: str,
 }
 },
 version: str,
 date: int,
 packager: {
 type: str,
 opts: {},
 },
}

Example:

{
 "name": "20191001-003401_3_test-domain",
 "domain_id": 3,
 "domain_name": "test-domain",
 "domain_xml": "<domain type='kvm' id='3'></domain>",
 "disks": {
 "vda": {
 "src": "/tmp/test/vda.qcow2",
 "snapshot": "/tmp/test/vda.qcow2.snap",
 "target": "20191001-003401_3_test-domain_vda.qcow2",
 },
 },
 "version": "0.4.0",
 "date": 1569890041,
 "packager": {
 "type": "tar",
 "opts": {
 "compression": "gz",
 "compression_lvl": 6,
 },
 },
}

The structure is the closest as possible from the backup definition.

Backups cleaning

This page describes how the process of cleaning the backups works.

Table of Contents

	Backups cleaning

	Remove a specific backup

	Clean outdated backups

Remove a specific backup

Not implemented yet in virt-backup. Removing a backup needs to be done manually, by removing the files.

Clean outdated backups

To be documented.

For more details about the retention period, for now please read this comment in a github issue: https://github.com/aruhier/virt-backup/issues/38#issuecomment-659590425

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to virt-backup’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Configuration

 		
 Backup

 		
 List

 		
 Restore

 		
 Clean

 		
 Configuration

 		
 Full example

 		
 Global options

 		
 Libvirt connection

 		
 Backup groups

 		
 Group options

 		
 Backup

 		
 Principle

 		
 How it works

 		
 Groups

 		
 Unicity

 		
 Multithreading

 		
 Domain external snapshot

 		
 Packagers

 		
 Data maps

 		
 Compatibility layers

 		
 Configuration

 		
 Backup definition

 		
 Pending data

 		
 Backups cleaning

 		
 Remove a specific backup

 		
 Clean outdated backups

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

